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1. Introduction

Maximum likelihood estimates of the parameters in Gaussian tire series maximize

the likelihood function

(1.1) L(O) = (27r)-T/2 -1/2 exp - ','},

where y is the vector of observations, 0 = , Eyy' = X = X(8). Exact maximum likeli-

hood estimation is complicated because even for standard models the needed determinants

and inverses are either not known in closed forms or, if they are known, they involve com-

plicated parametric functions. Thus only for the first-order autoregressive model are the

explicitly forms of the maximum likelihood estimators of its two parameters known (Hasza,

1980).

One procedure that is often used is to operate mathematically with the likelihood

function, so that it can be evaluated numerically at any point of the parameter space,

and then to optimize the function by varying values of the parameters, using an efficient

computer program. For example, the IMSL Library (1979) package of Fortran subroutines

uses a "modified steepest descent algorithm" to compute estimates of the parameters of

ARIMA models; the statistical package BMDP (1985) uses "Gauss-Marquardt methods"

to perform linear and nonlinear estimations. One idea in this area by Box and Jenkins

(1976) was the "backcasting" procedure to evaluate the approximate likelihood function

in some time series models. Useful suggestions have been the Cholesky decomposition of

the covariance matrix and "Woodbury's formula," as in Phadke and Kedem (1978), for

example. Ansley (1979) studied several approaches and proposed a new algorithm; he

reviewed earlier work by Newbold (1974), Dent (1977), Ali (1977), Osborn (1977), and

Hillmer and Tiao (1979). He showed the equivalence of the proposals by Newbold (1974)

and Dent (1977), and related this approach to Ali (1977). See also Nicholls and Hall

(1979).

Another approach is to derive an iterative procedure. Some iterative procedures use

the likelihood equations deduced by setting the derivatives of the likelihood function equal

to 0 to obtain a procedure of the form ii = g(O-j 1 ) for some function g depending on y,

where 0i, i = 1, 2,... are successive numerical values of the estimates, with io as a starting

value. Anderson (1975, 1977) considered several procedures for exact maximtun likelihood

estimation, and some approximations. Godolphin and de Gooijer (1982) presented a pro-

cedure for the first-ord, zoving average model. In general, deriving iterative procedures

tends to involve more mathematical elaborations of, and more knowledge about the like-

lihood function, than the approaches mentioned in the previous paragraph. A general
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iterative procedure for estimation purposes is the so-called "EM-algorithm" (Dempster, et

al., 1977), proposed initially for some missing value statistical problems; in our context

the initial values can be thought of as missing values, and when applicable the EM algo-

rithm will suggest a sequence of conditional expectation-optimization steps for the iterative

computation of the maximum likelihood estimates. Another approach involves Kalman fil-

te, .,g techniq,.es; sep fo, example, Harvey (1981). The connection of the present work

with the EM-algorithm and with Kalman filtering will be considered Uriefly in Section 8.

The purpose of this paper is to consider in detail iterative procedures for exact max-,

imum likelihood estimation in the first-order Gaussian moving average model. Section 2

introduces the model; Section 3 deals in general with iterative procedures, and the spe-

cific procedures are derived in Section 4. Sections 5, 6, and 7 contain the evaluations of

quadratic forms and traces in the time and frequency domains. Section 8 contains various

comments on the procedures. Section 9 contains evaluations of the numbers of operations

needed to compute certain traces and quadratic forms. Finally Section 10 considers the

approach of Box and Jenkins (1976) to the estimation problem.

2. The First-Order Moving Average Model

The Gaussian moving average process of order 1 with mean 0, denoted here by MA(1),

is defined by

(2.1) Yt = Ut+CUt- 1, t = -1,01,... I

where the yt are observable, the ut are unobservable independent normal random variables

with Cut = 0 u = 02, 0 < a 2 < oo, and a and a 2 are parameters. The Gaussian moving

average is a stationary stochastic process for any value of a.

The autocovariance (or covariance) sequence of the process is

as = o"2(1 + a2), s = 0,

(2.2) = 02a, IS[ = 1,

= 0, ISI> 1.

The autocorrelation (or correlation) sequence of the process is

Ps= 1, S 0,

(2.3) ISI 1,

=0, s> 1.
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For convenience, we write p for pl. The covariance sequence satisfies the Fourier inversion

formula 7
(2.4) a, = erAf(A)dA,

where f(A) is the spectral density of the process, given by

-2 O-2(2.5) f(A) = a2 i  a 2  
-a2A

(1 2 +2acosA), -r <A<
27e 2ir _

If Y1,... YT is a sample from (2.1), y = (Y1,.--,YT)' has a multivariate normal

distribution with expectation Sy = 0 and covariance matrix Eyy' = X = (ali-j 1 ).

Let us introduce the T x T matrices P and R (the correlation matrix) defined by

(2.6) X = a2 p = Or2 (1 + a 2 )R = 0oR.

We note that X, P, and R can be written as linear combinations of the identity matrix I

and the matrix G that is symmetric, has l's along the diagonals immediately above and

below the main diagonal, and O's elsewhere. In this notation

(2.7) X7 = ao + aG = a 2 (1 + a2)I + , 2 aG,

(2.8) P = (1 + a 2 ) +aG,

(2.9) R=I+ a G=I+pG.
1T+ a 2

For any a and T, X, P, and R are positive definite, the first because we also assume

that a2 > 0. As a function of p, R is positive definite for -a < p < a, where a =

1/{2cos[7r/(T + I)]); see Anderson and Takemura (1986).

The likelihood function can be written as a function of a and a 2 as

(2.10) L* (a, a 2 ) = (27r) -T/2IEI.l-1/2 exp Yrl

(2.11) = ( 2 r )T/2(0a2)-T/2 Ip[ 1 /2 exp { j.y~Iy}.

Instead of operating with (2.11) for purposes of maximum likelihood estimation, we

can separate the analysis into two parts: we maximize (2.11) with respect to a2 at
62 1 ,-

(2.12) 2= y ,

3



and then substitute ta2 = ;2 in (2.11) to derive the "concentrated likelihood function,"

which is a constant times the square root of

(2.13) n*() =
jpj(yp-1 y) T "

Since p = a/(1 + a2) = (1ia)/[1 + (1/a)2], the likelihood function attains all possible

values on the set for which Jaj < 1, 0 < a 2 < oo. Hence, without loss of generality we

restrict attention to this set. Note that Jai < 1 is the condition for invertibility, that is, to

express (2.1) as an infinite autoregression.

In terms of ao and p the likelihood function can be written as

(2.14) L(ao,p) = (2r, T12 (Oro)T/2 R1-1/ 2 exp { - y'R-1y}.

If the analysis is separated into two parts, we maximize (2.14) with respect to a0 at

1 , _

(2.15) a0 = 1 Y ,
T

and then maximize with respect to p the function

1
(2.16) n(p) = 1 y )T

Note that n*(a) = n[p(a)J, where p(a) = a/(1 + a 2 ).

For a i  1 and Jpf - 1 the following three pairs provide alternative equivalent
2

parametrizations for (2.1): a and a 2, OaO and al, p and a0 . For example,

1 - V1 - 4(a/o) 2  1 1- V/1--4p 2
(2.17) ==

2(al/ao) 2p

Hence, for purposes of maximum likelihood estimation we can operate with (2.10) as a

function of ao and a,, with (2.11) as a function of a and a2 , or with (2.14) as a function

of p and a0 . Similarly, in (2.13) we operate with a function of a, and in (2.16) with a

function of p. The relationship between the two parametrizations will be studied in more

detail in Section 3.

For further details about the moving average model see, for example, Anderson (1971)

or Anderson and Mentz (1980).
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3. Some Approaches to the Iterative Estimation by Maximum Likelihood

The method of maximum likelihood proposes to estimate the parameters by maxi-

mizing (2.10), (2.11) or (2.14); alternatively, we can use (2.12) and (2.13). or (2.15) and

(2.16). A basic difficulty comes from the complicated nature of the parametric functions

that are involved. Let AT = jP; then as functions of a and p we have for lal < 1.

1 -- 0 2(T+1)

(3.1) ATa 2
1 - a,2

(3.2) [T/ 2j + 1 ....
j=O

respectively. These results can be verified by showing that AT satisfies the homogeneous

difference equation

AT - (1 +a 2)TAT+ 2 T_2 = 0, = 2,3 ......

with A0 = 1, A, = (1 - a )/(1 - a 2 ). See Anderson (1971), Section 6.7, for example. If
pIj denotes the i,j-th component of P- 1 , then

(3.3) p' =(- Ai-IAT-j > i,AT

so that as a function of a,

(1 - o2)(1 - a 2 (T3±1))
(3.4) p (- (1 - a2 )(1 - a2(T+ > i.

See Shaman (1969).

3.1. Four aspects of maximum likelihood estimation

I. Likelihood vs. concentrated likelihood functions

As indicated in Section 2, operating with (2.10) tr (2.11) in terms of a and a 2 is

mathematically equivalent to operating with (2.12) and with the concentrated likelihood

function or with (2.13); similarly, operating with (2.14) in terms of ao and p is mathemat-

ically equivalent to operating with (2.15) and (2.16), in the sense that the solutions are

the same. However, for the same set of parameters, the estimating equations are not the

same for the likelihood and concentrated likelihood functions.

5



II. a and ar2 vs. p and cro

We have a choice of par-meters to consider. As indicated in Section 2, the threc pairs

that we discussed provide equivalent alternative parametrizations for the model (2.1). since

the maximum likelihood estimation procedure is invariant under such type of transforma-

tions of the parameters. it follows that from a mathematical point of view it is immaterial

with which set we choose to operate. However, different sets of parameters may lead to

different estimating equations.

III. Time vs. frequency domains

We pre;ented our resvlts so far (except for (2.4) and (2.5)) in the time domain. We

can consider the effect of a Fourier transformaoion. Let K be the orthogonal T x T matrix

with components

(3.5) 2 sin jrk = k T,

+ i T-i-1'

and let D be the diagonal matrix with diagonal elements

(3.6) d= 2cos - j
T +'

Then

(3.7) K'K = KK' = I, K'GK = D.

We have a way to diagonalize the matrix G appearing in (2.7), (2.8). and (2.9). If y = Kz,

then z = K'y, that is,

(3.8) z+= Ty+ ysinT+, j=1,...,T;

k= 

+

then z is multivariate normal with Cz = 0 and

(3.9) £zz' = aoI + aD = ao(I + pD).

This then provides an alternative approach that we may call a "frequency domain

approach": any expression in terms of G can be translated into an expression in terms

of D, and any method formally presented in terms of y can be translated into a method

presented in terms of z.

6



IV. Scoring vs. N wton-Raphson

To maximize the L or n functions (or the L* or n* functions) we have available two

procedures based on a Taylor's expansion. We illustrate this with

(3.10) logn(p) = -log JRI - Tlog(y'R - 1 y)

coming from (2.16). The expansion of its derivative with resp.-ct to p around a value P0 iC

d d(3. 1 ) d log n(P) =-- lon (P) + (p0 - p0) -- log 71()I - , p.o).

dp Idp =PPC

where R(p. po) is a remainder. The estimating equation is obtained by setting this deriva-

tive equal to C.

The Newton-Raphson proceture consists in replacing the remainder by 0 and sett;ng

p - ) and p- p-1). The iterative procedure is then

d 2 p~ ) _ d dcn p +2 l g n p

(3.12) - -2 log,7(P) P:) = n(p) { logn(p)

where all derivatives are evaluated at p = p-_

In the method of scoring the second derivative is replaced by its expectation, where

the random vector y is taken with distribution having parameter p = p0.

About these alternative approaches we note that the dichotomies likelihood vs. con-

centrated likelihood functions and scoring vs. Newton-Raphson procedures, arise from

theoretical considerations. The other dichotomies, a and o2 vs. p and as, and time vs.

frequency domains, are motivated on computational grounds.

From this analysis it follows that to estimate the parameters of the model (2.1) by

maximum likelihood under normality, we have sixteen alternative alpproaches, which may

lead to different iterative procedures. Some of these have already been presented in the

literature, as will be noted in Section 4.

Anderson (1977) emphasized these dichotomies, while operating with the likelihood

function.

3.2. Relations between two parametrizations

Since ao = (3 + a 2 )a 2 = ao(a, a 2 ), say, and p = a/(1 + a 2 ) = p(q), bay,

(3.11) L o(aa2 ) =Io(a, a2),a)].
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In L(ao,p) the range of p is -a < p < a, where a = 1/{2cos [ir/(T + 1)]}. A maximum

of L(co, p) occurs at &o > 0 and -a < j3 < a (with probability 1). These values satisfy the

likelihood equations

0 log L(oo, p)
(3.14) .0 0  =0,

0 log L(ao, p) =0.(3.15) ap 0

For T = 2 the solution to (3.14), (3.15) is unique, but for T > 2 there may be multiple

solutions to (3.14), (3.15). The maximum likelihood estimates &0, p are the solution that

makes L(ao,p) largest within the range a0 > 0, -a < p < a .

In L*(ao.a2 ) the range of a is -1 < a < 1, and (with probability 1) the maximum

occurs at -1 < & < 1 and a2 > 0. These values satisfy the derivative equations

( log L*(o,o 2 ) a log L(ao,p) Oao a log L(ao,p) dp
6o Oao Oa + Op d

a Olog L(o, p)9  2±9 logL(ao,p) 1-a 2lo ap2aa + 0.O
- 00o Op (1±+, )2

(3.17) 9log L*(a,a 2 ) a log L(ao,p) Ooo

Oa 2  = 0o 4 O02

_0 log L(ao,P)(1 + a2) = 0.

Oaco

If (3.14) is solved for ao = 60 (p) as given in (2.15) and substituted back into (3.15),

we obtain1 times
dlog__ _ y'R-1 GR-ly

(3.18) dlogn(p) - tr R- 1 G+ T R 0.

If (3.17) is solved for a 2 = a 2 (a) and substituted back into (3.16), we obtain 1 times

(3.19) d log n*(a) trR-IG+TY'RiGR'/ 1 2
da yR- 1 Y (1 + Q2)2 =0.

where R = I + p(a)G. Note that (3.19) has the solutions a = 1 and -1. Any other

solution a* to (3.19) yields a solution p* = p(a*) to (3.18). However, a solution p* to

(3.18) yields a solution to (3.19) only if - < p* 51 because then p* = p(a) can be

solved for the real root *1- i1 -4p .2

2p

8



which lies in the interval [-1, 1].

Consider 1 1

(3.20) n(p) = IRI(Y'R-Y) T = yIQ1 (i + pd,) (zl= -+Pd, T

lg (p) T dt T T dTz2

(.d o 1 + pd, + T t (1 ± )pd

T-- -

l + pdt t=

Setting (3.21) to 0 yields
(2d 1z T d T z2

(3.22) T 1 (1+pd)2S 1 +pd8 1= lpd 1  0

t= i zt 01 l +tp,,)

T
Multiplication by R 2 = ±. (1 + pd) 2 gives

T T T
(3.23) S 1: z pdil(++) 1 Z2de ( +p )5z (1+ )- .

t 1 7- t = q a t=1 rtt=

Note 1R12 is of degree 2T - 2 if T is odd and 2T if T is even (because d(T+l)/2 = 0 for T

odd).
If T is even, the first polynomial in (3.23) is

T
(3.24) T 1 2 H( + pdg) 2

2 2

-_ T5 [z.(1 (- pd.)2 - 4+-( + pdt)2]d J7J. I(- p- "o)
t=t=

(323 T VL Z2 dt - 2p + pd,)2 d, 1 1 ( + (zdq, Z2 z~~.. 1 1l +~ d,) 0.1

rr~t

2'2

t=1 ro 8= . = o

Note ~ -J isofdgre2T- 2  T i)d ad2 .iZ is ve (beaus dT+11 03o

4 T2 d 11(2 + 2Tr z2

t=1 d, ,=

z 2T-2 z2 t p2T-3

T T _ -2pdt +(2d]Z~-

T E -22----

9



since dt # 0, t -= 1,..., T. For T even, IG= (_ 1 )T/2 . If T is odd, the first polynomial is

T-1 T-1

(3.25) TZ [z: - pdt) -z _t.(1 +±pdt)2jde 11( p 2 d2)2

t=1

T-1I

= T E [(z 2 
- - 2pdt(z, + -T+i-t)

t=l

T-1

rot

T-I T-1
2 2

=T 2 (T-2 ) Z2z 4 ~±~d id
ro#t

t=1 r=1

P 2T- 4T ZI t 2 +...

t=1

If T is even, the first factor in the second term is

T T2

(3.26) Z:d. r(1 + pd,) [d, (1 pd,)-d 1 + pd) j1( p2 d 2)
2 2 q

8=1 q:0 a =1 €=1
q *

T

2 pd2

8=1 q-1

q08a

= TIGIp T - 1 + coefficient x pT-3 +

=(-)TpT - 1 + coefficient x pT - 3  ...

If T is odd, the first factor in the second term is

-'T- IT

(3.27) E [d,(l - pd.) - d.(1 + pd.)] J(1-pdq)

a=1 q;'1
q~5

T-1 T-1

=-2 pd2 1( pdq)
8=1 1

10



T-12

= (T -1)1 (-d)pT- 2 + coefficient x pT-4 +
s=l

=)T l)T±l T-2 T-4(2(T - 1)2 p- +coefficient x p +...

r-iT2 -1 2 coefficient x pT4 +...

We use the fact that H to T +_ dt is the coefficient of pT-1 in JR1.

If T is even, the second factor is

T

T 2 2

2= Z Z2 -1 z_+) t l l2- 2)

(3.28) z (+ + pd,) E 4-I - pt)+ T dt)p +r
t=l rt t=l

tr t

22
(2[Z 2 "+ Z--2 +1 pd(Z2 Z2+~ ) 2(] _ d 2)

t=lr-l

T T
2 2

- ZT+ t)dt11 -
t=l fi

T T
2

2- 2T- 2 +

(329 Z + T4+l-t) 1(1 -
t= l r 1-

rtt

2 2 _2

= - Zr+It Ial T -1
E dt

t=l

2 Z~t +- ZT'+ -t I p T-2 +

T " z T -1 _ _ -2

If T is odd, the second factor is

T--1 T- i

E t T t +-')

t=-- r-----

2' 2

112 (d



For T even, the left-hand side of (3.23) is

T z2 T-

(3.30) -T - .P2T-3+

For T odd, the left-hand side of (3.23) is

(3.31) (T - 1)(T + 1)2 Z2 p2T-3

4 2

With probability 1 the derivative equation is of degree 2T - 3 for every T.

The coefficients of the polynomial in p in (3.23) are linear functions of z,...z

which are independent X1 variables, hence the set of variables has a density. The roots

being simple is the complement to some roots being multiple. The latter event is described
by some algebraic relations among the coefficients and hence among . . T211,...,7 "T The event

has Lebesgue measure zero and hence probability zero. Hence, with probability 1 the

degree of the polynomial equation (3.23) is odd, the number of real roots is odd, and they

are distinct.

At each root the derivative is 0; hence, a local maximum or minimum occurs at the

point; further, n(p) > 0 and n(p) -- 0 as p -- ±a. Thus the number of maxima is one

more than the number of minima.

The relative maxima of n(p) occur fo- p E (-a, a). The relative maxima of

(3.32) n*(a) = n 1 + ±2

occur for a E [-1,1]. Let p, < ... < PK be the values of p for which maxima occur. The

probability that one of these values is ±I is 0 (by the above argument); those events can

be ignored. If -I < pj < 1

(3.33) a = 2pj

is real and yields a relative maximum of n*(a). If Ipjp > I, the solution to (3.33) is not

real and hence does not correspond to a maximum of n*(a). Hence, the number of maxima

with respect to a can be smaller than with respect to p. Anderson and Takemura (1986)

showed that the root F = 1 yields a relative maximum of n*(a) if dlog n(p)/dp > 0 at

p = 1. (Alternatively, the root & = -1 yields a relative maximum if the derivative is

negative at p =

12



Let ri7 < .. < 77K-i be the values of p for which minima of n(p) occur. Then

(3.34) P1 < 771 < ... < rK-1 < PK.

If 77k-I < I < Pk for some k(k = 2,... , K), then dn/dp > 0 at p and there is a relative

maximum of n*(a) at a = 1. If Pk-1 < I < 77k then dn/dp < 0 at p = and a gives

a minimum.

Let a 1 < ... < aj be the values of a giving relative maxima of n*(a). Each satisfies

(3.33) except possibly a1 = -1 and/or aj = 1. The last may occur only if PK > i. Thus

J < K. The maximum likelihood estimate of a is that one of a 1,... , aj for which n*(Qj)

is greatest.

The maximum likelihood estimate of p is that one of Pi,..., PK for which n(pj) is

greatest. If that pj is in (--, 1-), then the maximum likelihood estimate of a iQ given

by (3.33) for that pj. If the maximizing pj is outside (_i-, -) (and hence p, < - 1 or

PK > ), the maximizing a may be a solution to (3.33) for another pj or it may be -1 or

1. If n(-) > n(pj) for every Pj E (-1, 1) and n(l) > n(--) the maximizing a is a =1; if22 2 2( 2h 2 aiiigai ;i

n(-1) > n(pj) for every pj E (-, ) and n(- 1) > n(}), the maximizing a is a = -1. If

n(!) < n(pj) and n(-}) < n(pj) for some j, then the maximizing a is (3.33) for some).

Anderson and Takemura (1986) evaluated the probability that a = 1 and alternatively

a = -1 yield relative maxima. The probability that & = 1 or a = -1 is, of course, less

than the probability that a relative maximum occurs at a = 1 or a = -1, respectively.

4. Iterative Procedures Derived from Newton-Raphson and Scoring Methods

In this section we derive several iterative procedures to estimate the parameters of

model (2.1), with emphasis on the estimation of p. After some preliminaries and the

introduction of some notation, we operate successively in the time and frequency domains.

4.1. Notation and general rules

To estimate by maximum likelihood the covariances of the moving average part and the

coefficients of the autoregressive part of an ARMA(p,q) model, Anderson (1977), Section

4.1, derived the equations that in general correspond to the iterative procedures in the

Gaussian case. In the case of a MA(q) moda1 these equations are

(4.1) i- ,-.1 ) =
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where &j = (a(' ), ,(. . . a'))' is the vector of estimated covariances at step i, Ai-1 is an

estimate of the information matrix for the covariances, and i-1 is composed of estimates

of alog L/oaj, j = 0,1,... q. From (4.1) we deduce the iterative procedure

(4.2) Ai-lii = gi- 1 + Ai-i&i-=1 Fi-1,

that for the MA(1) mo('el is written in terms of components as follows:

(4.3) 00 01 or0
I01 (i-1) 60 \ii

( 10 "111 = r

Solving for a(') and -r,) and using p-5) - )/ we obtain the iterative procedure

(44)01 r 1  - All F. p - A10 r0 - A\00 r 1

The needed ,ij and ri can be evaluated by using the scoring or Newton-Raphson

procedures, as will be shown next.

The derivation of these procedures will lead to certain quadratic forms and traces that

we now consider. We use the fact that if A and B are square matrices with B nonsingular,

then AB = BA implies that AB - 1 = B - 1 A. We use this result with A = G and B = ,

for example. From (2.9) we use R = I + pG, and hence,

(4.5) RG = (I + pG)G = G + pG 2 = G(I + pG) = GR.

We now define a set of quadratic forms by

(4.6) qik = y'R-(j+)Gky, j = -1,0,1,...; k = 0,1,2,... I

and a set of traces by

(4.7) tjk = trR-JGk j, k = 0, 1,2 ....

We note that qjk is a random variable, a function of y, and that

(4.8) Cqj = Ey'R-C+)Gky E tr y'R-(j+l)Gky = tr R-(+)GEyy '

= tr R-(j+l)Gk - tr R-(J+l)Gk oR = oo tr t-jG'

- aOtjk,

where we used (2.6) and the fact that G and R commute.

In our operations we shall find quadratic forms like y'R - 1 GR - 1 y, y'R - 1 GR - 1 Gy,

etc., and traces like tr R-2G, tr R- 1 G 1-', etc., so that frequent use of this commutative

property will be made.

14



4.2. Time domain considerations

4.2.1. Procedures based on the likelihood function

Iterative Procedure 1 (Time, Likelihood Function, Scoring)

In Anderson (1977) Section 4.2, it is shown that (4.1) above leads to a system that in

the case of a MA(1) model is
tr ±- 21U)+tr F 2 1Ga'(=y'Y±-2y,

(4.9)
tr ±_,_G Y zIG a 0 + tr ±_= -. 'lya'.' Y, 1 G±j 1-- i - - 1 Y i- - Y"

These equations can also be written with R instead of Z, using the fact that Z = O0R,

and a-"2 cancelled throughout. We can then write the resulting linear system as

2 21
) 

t20 tl 0
1

0

W _i)1

Solving this system for 3() and 03 , and using the definition of p-), we obtain the following

iterative procedure:

( 4 .10) f i 1) _.4 i- 1) -40 - 0 ) - i- I) -- i) i- 1 ) .i - 1 ) -(i- I ) .(i- 1 )

(4.11) _ j ,
1 2210 - P - 20 q1L 2 1 q1 0

Iterative Procedure 2 (Time, Likelihood Function, Newton-Raphson)

Equations (4.2) in Anderson (1975) become, in the case of a MA(1) model,

Y r,Y - 2 tr i-l 0+ ( _ _ " -- 2 ) ( ._3 ,l -2,-

(4.12) + y'2tr EG .' y - tr ±71

1

z , G, y - t r I1 G .. , -_ I,
-2 

0 1 ~
7 ' , G±- 11 G±,7.11 y - tr I, ±J, G.7J 5) 3

'±-'_ -. 1J tr ±71_I G.

Since G commutes with E (Z = aoR), it also commutes with X-1. Introducing the

notation

(4.13) q~k = y'Z-(J+1)Gky, tk = tr £7-1Gk,

15



so that q= tk, we write (4.12) in matrix form as

(4.14) q 2 0  - t20 q21 _ '21 0 2 *q 10 (i -
( I- ) q22(i-1) (i-1 1 '( -1) (1)3 *( -1 ( --1)

q 2 1  - 21 q 2 2  - 222 /q l l

Since ±-' appears in the coefficients of the system (4.12) raised to different powers,

substitution of X = o0 R will not produce the cancellation of all powers of ao 1 . Hence, we

do not write an expression for p as we did in Iterative Procedure 1, but leave the iterations

to be carried out for c0 and a as indicated by (4.14).

4.2.2. Procedures based on the concentrated likelihood function

Iterative Procedure 3 (Time, Concentrated Likelihood Function, Scoring)

We operate with (3.10), that is,

(4.15) log n(p) = -logl + pG - Tlog {y'(I + pG)-1 y}.

We have

(4.16) dlogn(p) =-tr R-1'G'+ y'lRly

(tr R-'G)(y'R-'y) - Ty'R-'GR-'y

-0.

To apply the scoring method we use the fact that

(4.17) I = R-1R- R-I + pG) = R - ' + pR-1G,

so that

(4.18) tr R-G = tr R-G(R-' + pR-'G) = tr R-1GR- 1 + p tr R-1GR-'G.

Substitution in the numerator of (4.16) gives the estimating equation

(4.19) tr RiTIGRiG(y'R,2iy)pi<)

=Ty'R2, GR~lly - tr k2 1 G (y 2 1  ,
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or, in the notation introduced in (4.6) and (4.7),

(4.20)
22 q00 P~ -- - O0

Iterative Procedure 4 (Time, Concentrated Likelihood Function, Scoring)

To derive Iterative Procedure 3 we used (4.17). Another approach is to go back to

the general structure given by (3.12). The first derivative of log n(p) with respect to p is

given by (4.16), and the second derivative is

(4.21) d log n(p)
tr R-'GR-'G + T - 

2 y RF - G R - G - y(yRi- i) + (y'R'GR'Y)2

(y'R-'y) 2

tr R-1 GR-1 G(y'R- 1 y) 2 - 2Ty'R-1 GR'GR- 1  y(y'R' y) + T(y'R' GR' Y)2

(y'R-' y) 2

The method of scoring consists in replacing (4.21) by its expected value; instead, we

can replace each quadratic form in (4.21) by its expected value, using (4.8). In the notation

of (4.6) and (4.17) this is

-2ot 22coT + (uotui) 2  t2

(4.22) t 2 2 + T (--oT) 2  = t22 +

Finally, Iterative Procedure 4 to estimate p is given by

(4.23) {to- 1)-, T [i1) 1- } 1i) - _ -

Iterative Procedure 5 (Time, Concentrated Likelihood Function, Newton-Raphson)

The iterative procedure is (3.12). From (4.16)

(4.24) (yR-1 y)2 dlog n(p) = T(y'R-'GR-y)(y'R-'y) -tr R-1G(y'R-1y) 2

= Tqllqoo - tllq2
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From (4.21)

(4.25) -(y'R- y)2-d2 log n(p) = 2Tq22 qoo - t 2 2q20 o - Tq2.

It follows that the iterative procedure for p can be written as

1)qti - i-)[ ) 2 _ [ _,1)} 2

(4- {2226) 0) -( 2-1 [ 1)]2 -T T

4.3. Frequency domain considerations

SIn this section we write all quadratic forms and traces appearing in the iterative

procedures presented in Section 4.2., in terms of the elements introduced in paragraph III
of Section 3.

From (3.7) we have I = KK' and G = KDK', where D is diagonal with diagonal
elements d, = 2 cos[ij/(T + 1)], j = 1, 2,...,1T. Then

(4.27) RI - I + pG =KK' + pKDK' = K (I + pD)K',

so that R is also diagonalized by the orthogonal matrix K, and I + pD has diagonal
elements 1 + 2p cos[+rj/(T +- 1)1. It then follows that

(4.28) r = K(I + pD) tK', = KDK', s = 0,1.

Putting these results together we find that the quadratic forms introduced in (4.6)

can be written in terms of the ze defined in (3.8) as

(4.29) qjk w YR-(+I)GY = y'K(I + pD)-(+D)KiKDkKi l

- (K'y)'(I + pD)-(+)Dk(K'y) = z'(I + pD)-(3±l)Dkz

elem(1 +dp-ds)j+ z, j -1,0,1,... jk = 0,1,. ,

while the traces introduced in (4.7) become

(4.30) R = tr R-JG = tr K(I + pD)IJGkK '

= tr (I + pD)-yDkK'K = tr (I + pD).Dk

T _+ ._ j,k= 0,1 .

E -I (1,)+pd)
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For an interesting connection of these results with the analysis of variance see the

paper by Speed (1987) and the comments by Anderson (1987).

5. Evaluation of Quadratic Forms in the Time Domain

5.1. Introduction

In this section, we develop some algebraic procedures for the evaluation of quadratic

forms. In Section 9 we compare some of these from the point of view of efficient computa-

tion.

We first show that all quadratic forms qjk used in Section 4, where j > k, can be

expressed as functions of qjo = y'R-()+"y. In effect, since R 1 + pG, we can substitute

G = p-'(R - I) in qjk, provided p # 0, to obtain

(5.1) qjk - ytR-(j+1)Gky = P-kY'R-(j+l)(R -)kY

= p -kY'R-0J+1) 1(_,) k - -, R" y

s0=
k

8=0

For example,

(5.2) qj = (qoo - qio), q21 = (qlo - q2o), q22 = 1-(qoo - 2 qo + q2o).

These relations can be used to express the iterative procedures of Section 4 as functions

of the various traces and of the qjO. For example, in Iterative Procedure 1, (4.11) becomes
i ) ( -1) ::i- 1) -,(i- 1) '(i- 1) ),(i- 1) --,(i )

(5.3) P t22 + t-o 14u qoo-1

-- 20 q00 [--l + 2 1

while in Iterative Procedure 3, (4.20) becomes
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Let us now define

(5.5) x = R-ly, v =R-x.

Then

(5.6) qoo = Y'R-ly= qo= y -2y x, q20 y'R -3y ,

and we see that it suffices to solve for x in the linear system

(5.7) Y = P.X,

and having done that to solve for v the linear system

(5.8) x = Rv.

Once y, x, and v are available, all quadratic forms appearing in the iterative pro-

cedures defined in Section 4 can be easily expressed in terms of the components of these

vectors. In effect,

T T T

(5.9) qoo yixi, qio =ZXi
2  q20 = S i

t=1 =j=

while

T-1

(5.10) qI = Y'R- 2 Gy = y'R-1 GR- y = z'Gx = 25 xixi+i,
1=I

T-i

(5.11) q21 = y'R- 3Gy = x ' R - 1 Gz = v'Gx = 5(xi+ivi + xivi+i),
s=l

T-1 T-2

(5.12) q22 = y'R- 3 G 2 y = v'G = xV + XTVT + 2 1 x,v, + 5(t,,+ 2 4 ,+2V,).
s=2 1=1

Hence, it folows that the calculation of the quadratic forms can be reduced to the

calculation of the qio for j = 0, 1 and 2; this in turn corresponds to solving explicitly for

z the systems (5.7) and solving for v the system (5.8). This will be considered in the

remaining parts of this section.
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Useful references for the treatmen, of linear systems in the indicated context are

Anderson (1984), in particular Appendix A, Golub and Van Loan (1983). and Graybill

(1969).

5.2. Cholesky decomposition

The Choleskv dconmposition of a mat r-x -, a useful and efficient device, that in our

case can help to compute the needed quadratic forms. We con-ider the decomposition of

R.

5.2.1. Derivations

Since R is symmetric and positive definite for -a < p < a, whee 1/2 < a < 1, in this

range its unique Cholesky decompositiun exists. It can be written as

(5.13) R = TT',

where T = (ti)) is bidiatonal (because R is tridiagonal), lower triangular, tii > 0, tij = 0

for i < j and i > j + 1. The decomposition can also be written as

(5.'4) R = UVU',

where U = (uj) is bidiagonal, lower triangular, uji = 1, uj. = 0 for i <j and i > j + 1,

and V = (vi,) is diagonal with vii > 0 (T = UV.)

Expressioni (5.13) is often called the Cholesky decomposition of R, and T is called the

Cholesky triangle. The procedure to obtain T is sometimes called the square root method.

Setting VU' = S, say, we see that S is bidiagonal, upper triangular and that R = US,

which is a case of the so-called LR decomposistion.

Proposition 1. The components of U and V in (5.14) satisfy

(5.15) vA - s T,

and

p __-1( 5 .1 6 ) u , +t .0 - - ps = 1 . , T - 1

whert the A, are given in (3.2).
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Proof. Let R = (r,)). In terms of components (5.14) is

T T T

(5.17) j = E Utl'stlut E Ujs9Vss'UjS= U:Vii~Uj, + Uz, 1 ... V2 -1,t-1 ?j,,1.

- _ t=1 s=1

For j = i we have

(5.18) 1 , = uiiL, , + Ui , .. iv i'i-,i = V'ii + Ui

forj =i - 1 we have

(5.19) p = r,.t-i = uitiui-l'i + Ut'i-i-l i- i i-i-i = Uii-li-l i-

From this last expression we deduce that

P
(5.20) Ui,i-i -- , 2 = 2,..., T.

Vi-l'i-1

Using this expression in (5.18) we have

(5.21) Vii = 1 . p
I~i--~i--1 Vi-l,-1

Direct evaluation provides the values

1-2o2 1-3p 2 +p 4

(5.22) V11 = 1, v22 =1 - P, V3 3 = 1v 2 1 -44= 22

in agreement with (3.2) and (5.15). We then complete the proof by induction:

A -. 1 p2 p2

(5.23) Vii = A -, P A- i-2 = A

because the determinants of the R matrices of various order satisfy

(5.24) AS = A._I - p2A.-2;

see Shaman (1969). Since further U and V are unique, the proof is completed.

Note that (5.15) holds for the Cholesky decomposistion of any positive definite matrix

R. As defined in (2.8), P is symmetric and positive definite for any value of a. Hence,
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its unique Cholesky decomposition exists and can be written in ways similar to (5.13) and

(5.14), namely,

(5.25) P=TT =UVU,

where the T, U, and V" matrices have the same structure as for R. An argument similar

to that in Proposition 2, together with the fact that in terms of a the determinants of the

P matrices satisfy the relation A8 = (1 + a 2 )A 8 _1 - a 2 _ lead to the expressions

A, 1 - a2(s+1)
(5.26) = - - I s.s= .T,

Sa 2s

(5.27) Uis+1,s = - =- s=L, T-1.vU s 1 - - a 
2 ( 

s 
+ )  

..

These are simpler expressions in a compared to those involving the polynomials in p given

in (3.2).

Proposition 2. The components of T in (5.13) satisfy

(5.28) = A s = 1,...,T

(5.29) , FV 2 s = 2,...,T .

Proof. Comparing (5.13) and (5.14) we see that T = UV 1" 2, from which (5.28) and

(5.29) follow. I

5.2.2. Using the Cholesky decomposition to compute quadratic forms

We now use the results of the previous section to derive expressions for qjo, j = 0, 1,2.

(5.30) qoo = y'R-iy = y'(UVU')-'y = (U-y)'V-'(U-'y)

= = T 2 T ASI 2
Vas  A a

8=1 a=12
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where w = U - 1y. It suffices to find w in the linear system y = Uw. This system is

(5.31)y. 1. .. 0w.

(YT1 0 ..i UTT-1 i) (W)T

and hence it follows that w =yl,

(5.32) wS = ya - u,-=wS-1 YS - P w-, S 2,... , T.
A 8-1

Let us now define w* = V-w - (wi/Vii,..., uT/VTT)'. Then,

(5.33) qio = y'R- 2y = Y'(UVU')-I(UVU')-y = w'V-1U-1U1-1V-1w
T

w U-'(U')-lw* = Xx' = '9,

8=1

where

(5.34) (U')-lw* = (U')-V'w = (U')- V-'U-'y = (UVU')-'y = R-yx,

as defined in (5.5). Hence, it suffices to find x in the linear system w* = U'x. This system

is

Wi/Vii/1 U21  0 ... 0 0X
w 2 /V 22  0 1 U32 ... 0 0 X2

(5.35) 1 ..
oTIV -, - 0o ... 1 T -1 X 1

( WTVTT 0 0 0 .. 0 1 \XT

and it provides the recursive relations

(5.36) =WT =AT-1
VTT AT

XTs=WT-s - PXT-s+I AT-s-1 (WT-s pXT-s+Il, .s =1 T -1
VT-a,T-a AT-.

Finally,

(5.37) q20 y 'R-3 Y Z'(UVU') - Iz = (U-1z)'V-'(U-z)
=~ hh~l = 2 = T -  2

hV1hE -=Z 1: AZ hs
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where h = U - 1x. It suffices to solve for h the linear system Uh = x. This system is

similar to (5.31) and hence it follows that hi = xj,

(5.38) ht = x3 - us, _:hai = x3 - P - s = 2,.. ,T.

We summarize these results as follows: With observations y1, ... , YT we compute

T s,-1 2 As-2(5.39) qoo E _W U1, =i v = Ys -P -7s= 2,....

(5.40)
SX2 AT-1 AT-s-i(wT- pXT-s±,), s = 1,...,T- 1;DO0 E' X3, XT =- -TWT T, -1 - A T-s W- PX slsT

T 2 s-2

(5.41) q2o=0 A h, hi =xi, is =x. -p h-,, s =2,...T.
8=1 A8  

As.-1

5.3. Successive elimination

From the preceding discussion it follows that we have to solve certain linear systems.

Let us consider (5.7) in detail, namely, R = -y: we have to solve it for x for a given

vector of observations y, and a given matrix R evaluated during an iterative procedure.

The method of successive elimination corresponds to multiplying the system on the left

by the matrix F that is lower triangular with diagonal elements 1 so that in the resulting

system

(5.42) FRx = Fy

FR is upper triangular. This upper triangular linear systsem is called the "forward solu-

tion" of the method of successive (or Gaussian) elimination, or pivotal condensation.

Anderson (1971) gave this procedure in detail for the case of (5.42); see also Anderson

(1984), Appendix A, Theorem A.1.2. Using this approach, y'R-2y and y'R-1GR-1y

were evaluated and, for example, the final expression for the former coincides with (5.40).

This is so because the Cholesky decomposition is equivalent to the forward part of the

method of successive elimination. We summarize these details here for the sake of com-

pleteness, and because they provide a practical way to calculate the elements introduced

in Section 5.2.
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The product FR corresponds to successive left products by elementary matrices F

so that

(5.43) FR = FT-1... F 2FR.

Fj adds to row j + I of the preltict F_, ... F2.FlR a multiple of its row j so that the

product FjFji ... F2F1R has elements equal to 0 in column j below the j,j-th elemcnt.

Let F,= ( ) s -- 1.T -1, F = (fij), Fy = w = (u'1 , U'T)'. Let rj) be
the j,j-th element of the product FjFj-l ... F2 F1 R. Then,

(j r -- ) p2

(5.44) rl(1) 1 r'-r 1= , ,-j= - ,~ j=2,..T
r-1,3 -1

(5.45) 0) P Pfl+1, -- r(.j.), ,. . -
ii

The elements rand f1and j = 1, . T - 1, can be computed in sequence. Then
compute w as follows:
(5.46) W, = Yl, wj = yj +fjw-i, j =,.T

Thus, the elements of w can also be calculated in sequence. Finally calculate

(5.47) WT2 (72)' xI = -+fl,)+l, x= T- 1,...,1.

rTT rjj

Having calculated x we compute qoo and qio using (5.9).

Comparing (5.21) with (5.44) we deduce that

(5.48) r(j) -

and in fact we are calculating the diagonal elements of V in (5.14) in an (ascending)

sequence. Comparing (5.16) with (5.45) we deduce that

(5.49) W(,)fj +i = -- uj+lJ.

The vector x as given in (5.47) is the "backward solution" of the method of successive

elimination or pivotal condensation. In effect, (5.47) can be written as
¢(1) 0

0 If2 0 ... 0 0
(2)

0 0 f32 .-

(5.50) x V-1w + X,

0 0 ... 0 f T
0 0 0 ... 0 0

26



where w depends on Y,..., YT, and this is the form of the backward solution.

5.4. Another recursive procedure

The linear system y = Pa can also be solved by repeated substitution, as follows.

Using /1 = A' + pG we h~vc

X Yl lPX2
X2 Y2 px1 + px3

(5.51) PX= +-p"3
XT-1 YT-1 pXT-2 + PXT

XT YT pXT-1

By repeated substitution we have

X1 = Y1 - px2 = c11 yI + bIx 2,

X2 = Y2 - PXl - pX3 = Y2 + (-p)YI + (-p)X3 + (-p)2X2

= (1 -_ t2) - 1 {(-P)y, + Y2 + (-p)X 3 } = C21Yl + c 2 2 Y 2 + b2 X3.

In general we have
T

(5.52) =_1 ctjyj + btxt+l, t = 1,...,T - 1.
j=1

Then

Xt+1 = Yt+i - PXt - Pxt+2 = Yt+1 - pxt+2 + (-p) ctjyj + btxt+}
j=l

= (1 + Pbt)- 1 { (-)ctjyj + Yt+i + (-P)xt+2 }
and the recursion for the coefficients is

Ct+lj =- i+pb, ', j = 1,...,

(5.53) 1 j ='t + 1,
lbpb P

l+pbt

where these expressions hold for f - 1,... , T - 1, and we either define bT = 0 or take

XT+1 = 0. The resulting system is

X1C 1 l 0 ... 0 0

X2 c21 C22 ... 0 0
(5.54) "T=1.... ,

=T-1 CT-1,1 CT-1,2 ... CT-1,T-1 0

XT CTI CT2 ... CT,T-1 CTT
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where cl = 1, b, = -p. Denoting C -= (cij), (5.54) can be written as

(0 10.. 0
0 0 b2 ... 0

(5.55) X = Cy + . 0)
0 0 0 . T_,.

0O 0 0 ... 0

which compares with (5.50). In fact,

,st-i _ .(1)

(5.56) b, ~ P -p ,+-,, = -u,+i,t, T -1.T- 1,
Vtt

while

(5.57) =~ = (-p)t'- , j = 1,..
vjj Aj

The ci, can be obtained from V- 1 w in (5.50) by repeated substitutions.

6. Evaluation of Traces in the Time Domain

6.1. Introduction

In Section 6.2 we will evaluate tjo and t20 by means of series expansions; we now show

how all traces tik used in Section 4, where j > k, can be expressed in terms of the tjo. In

effect, using again that G = p-(R - I) we have

(6.1) t jk = tr R-jG k = p-k tr R-j(R - I)k
k k

=- tr R-' Z(_l)kA k)'= kZ(lk, tr
s=O a=O

k

= - I]- Z1) 'S . k.
8=0 )

For example

1 1_ 1
(6.2) t, = -(T - to), t21 = -(t 1 o - t20), t2 2 = -{(T - 2tio + t 2 0 ),

p P p
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These relations can be used to express the iterative procedures of Section 4 as functions

of the various quadratic forms and of the tio. For example, in Iterative Procedure 1, (4.11)

becomes in terms of qjo and tjo only,I . )~~' {r, ,, -'-', -1)-( 0- 1)o- }1)P-
(.) r2o0 q00 -q 0o qi + T-

L20 q00  -tl 0  q P0 jp

and in Iterative Procedure 3, equation (4.20) becomes

(6.4 { T --'t(' - ;-~11) - P0
(6.4) ~1 {T o- - ' - ] ' -r 2 0  Jq00 _'-"i1)pi) q0I

In Section 6.3 we shall develop a procedure to evaluate t1 1 and t 2 2 in the form of some

rational expressions; we now show how to express all other needed traces as functions of

these two.

From (6.2) we deduce that

(6.5) tlo = T - ptil, t20 = T - 2ptll + p2t 22,

and hence that

(6.6) t21 =tll - pt22.

These relations can be used to express the iterative procedures of Section 4. For

example, expression (5.3) for Iterative Procedure 1 becomes

q10 q00

while expression (5.4) for Iterative Procedure 3 becomes

(6.) {T-o-lyzo1) + 2 O-I -) i)

6.2. Series expressions

For IpI < 1/2 we have

00 00

(6.9) ti 0 = tr R = tr(I + pG)- = trZ(-p)jG' = Ep 2k tr G 2k,
j=0 k=0
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since tr G - 0 for j odd. Note that (6.9) converges because the characteristic roots of G
are less than 2 in absolute value and [pj < .. Similarly,

00 00

(6.10) t 20 = tr R --2 = tr(I - pG)- 2 = trEj(-p)j-'Gi - 1 = Z(2k + 1)p 2k tr G 2 k.
j=l k=O

It is shown in Section 7.3 that

T+1 1 0± ( 2k p2k(6.11).f to - _4 p 2  1-4P 2 + 2(T + 1)' k k- g(T +) "
g---1 k=g(T+l)

6.3. Rational expressions

To compute til and t22 we consider an expression for IRI and use that

(6.12) dlog RI = tr R-1G = tii,
dp

(6.13) d log lR = - tr R- 1GR-CG = -t2.

Anderson (1971), Lemma 6.7.9, shows that

(6.14) I-OGI =(1-4 2 - V (1)T+1 {(1 vT --40)T+ - (4)T+)

Hence, we identify 0 = -p and use this result directly. Let us denote a - (1 - 4p2)2, so

that da/dp = -4p/a. Then

(6.17) + a)T + I  a)T +

(6.16) log [Rl= -loga -(T + )1og2 +log {(1+a)T+ I (1 - a)T+' }

d loi I _4p (T + 1)iE J-(1 + a)T-- (1 -a) T }

dp a2  (1+ a) T + -(1 a)T+

4p 4(T+ 1)p (1 +a)T + (1- a)T

a2  a (1+ a)T+ -- (1 - a)T+l

30



68 d 4a2 +32p 2  4(T + 1)(a 2 +4p 2 ) (1 +a)T + (1 - a)T
(6.18) .. ogdp2 l R I  a4  a3  (1 +a)T + - (1- a)T+I

16(T 1)p 2 IT{(1 + a)T - 1 - a)T-1 }{(+ + a)T+l a(1 )T+ I }
a2  [ {(1+ a)T+_ (1 a)T+1}2

(T+ 1){(1 ± )T + - )T}21

S{(1 + a)T+l -( a)T+ J
Simplifying slightly this last expression we have

(6.19) 4+16p2  4(T-+-1){(1+a)T+(1-a)T}
. plogR - a4  a3{(1 + a)T+1 - (1 - a)T+l}

16(T + 1)p2 (1 + a) 2 T + (1 - a) 2 T + (4T + 8 p2)( 4 p2)T - 1

a 2  {(1 + a)T+l -(1 a)T+l }2

6.4. Using the solutions of linear systems

The calculations in Section 5.3 were presented as part of the computations needed for

quadratic forms, but can also be used for traces.

From (5.14) we have that R = UVU', so that the "forward solution" (5.42) FRX =

Fy = w is VU'x = U-1y = w, and simultaneously U'x = V- 1U-1y = V- 1 w. Note

that F = U -1 .

To compute tjo = tr R - 1 we set RX = I, where X and I are of orders T x T. In

successive elimination the forward solution is FRX = F or VU'X = U - 1 . We get U - 1

and (diagonal) V by recording the steps of the forward solution of Rz = y. Then

(6.20) t0 = tr R - 1 = tr X = tr(U')-'V-U - 1

= tr F'V- 1 F = tr V- 1 FF'
+ T 1+ f,1+ f.2+ + f,,-

s=2s

where F = (fij). From Section 5.3 we have

(6.21) F = FT-IFT-2 .. "F 2 F1,

and that the F, matrices, for s = 1,..., T - 1, are lower triangular, bidiagonal, and have

elements

i=j,

(6.22) = -p/r, ( = -p/v.a, I = s + 1 ,j = S,

= 0, otherwise.
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Using these results we obtain
Ci-1) (i-2) .. f (j)

(6.23) fij =, j--1,...,T-1; i=j+,...,T.

In more detail, the elements of F below its main diagonal are

(6.24)

f= f(1)k
( )2)f31 = 32 f21 --- f2r1 32 -- f32

f~ = f43)(2f()(3) (2) (3)

i(T-1) fC(T-2) €(1) _f(T-1) f(T-2) f(21 T1
fTl = fTTIT1T2... f2'1 fT2 =f ,-f -1,T-2 32 ' fT,T-1 = T-

We next compute t 2 0.

(6.25) t20 = tr R - 2 = tr(F'V-1F)(F'V-1F) = tr FF'V-'FF'V-1

T T

= tr(V-TFF' V-)(V-5FF'V--i)' = tr HH' " -hi,,
t1j=1

where H = V- FF'V- is symmetric, and we have used the circular property of the

trace. The components of FF' are

T min(ij)

(6.26) f i  = Z ftsa3 , i,j = 1,...,T,

so that the components of H are

(6.27) hij= E8=i i =Mh

and hence

T T mn(tj) fi " 2

(6.28) t 2 = Y E EL~ 1:
i=1 j=1 S=, vi .vT

= I Vii -- =1 s=l

i<j

812Em +2ZZ -1 : 2if
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These computations for a given value of p can be added to those presented in Section

5.3 to compute q0o and q1o. We now present the computations needed for q0o, q10, q20, t 1 o,

and t2o, followed by some comments to facilitate the interpretation. Define P = FF'.

Starting values (s = 1)

(6.29) -il 1,

(6.30) f~,=1, j = 1,...,T

(6.31) t o) 1 ,

(6.32)0- = 1

(6.33) W= Yi.

Step s, s =2,...T

(6.34) r() = '"- i' - 7 ,

r(1-a

(6.35) f(l) P

t,-1 (s-)

(6.36) fj = L,, 8-1 ,-, j = 1,...,s - 1,

(6.37) O'j = Zfkfjk, j = 1,..
k=I

(6.38) t =)  (-l) + 0810 10 01)--
02 '

(6.39) t= + [)] +2 ,(-I (+ ) (1) j
[r, r8-) r1 1

(6.40) w, = ya + f(,,- w,-1.
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After completing these computations we have
(T) (T)

(6.41) tj0 = °, t20 = 10
WT xj Wj U!)

(6.42) XT + j+jj+ j T- 1....
rTT

T T 2
(6.43) qoo- yix,, qO - xi.

Finally, to compute q20 we have
t (s-I 1'W

(6.44) w" = xi, wL, = x + j 1 W- 1, s = 2 ,.... T.

r (T) r~j )
(T)(i) t .J~lJVJ~l, j = T - 1. .

rTT ji

T

(6.46) q20 =ziv,.

Note the following points.

1. Formulas (6.34), (6.35), (6.40), and (6.42) were already given in Section 5.3 to

compute q00 and qio in (6.43).

2. Similar computations in (6.44) and (6.45) produce q20 in (6.46). This vas dis-

cussed in (5.5) - (5.9).
3. Hence, the superscripts in r.8 ) and f( 1) and the indices in w correspond to

the calculations being done in sequence.

4. To calculate tl0 and t20 we need to compute the components of F and -0 = FF'.

One row of F is computed at each step, namely, for row s, the elements fsj for

= 1,... ,s - 1. Further f.s = 1 and f.j = 0 for s <j. The calculations in (6.36)

correspond to the structure of f,, given in (6.23) or (6.24).

5. The components of @ = FF' exe scalar products of the rows of F, and are

calculated in (6.37), where the sums can also reach k = T in each case, because

for k > j (j < s) at least one of the factors fjk is 0.
(iT)

6. In t 0) and tio) the superscripts denote partial sums, so that t( 0 = tio and
1 (T) = t 20 , which is (6.41).

20
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7. Evaluation of Quadratic Forms and Traces in
the Frequency Domain

7.1. Calculation of Fourier coefficients

The Fourier transformation of the operations (3.8) is different from the usual trans-

formation

(7.1) Tk k - = 0, 1.[.,]

T 2rJk[T ]
(7.2) 2ZYksi T

k=1

(7.2) yk sin 7 , k [T -,.. 1] .

Since the transformation (3.8) diagonalizes G and the transformation (7.1) and (7.2) does

not diagonalize G, the former yields simpler results, as indicated in Section 4.3.

For large T, the fast Fourier transform can be used for efficient computation of (3.8).

We write for j =1. T

/2 T jk

(7.3) zj= T- Yk sin Tk+

k=1

V 2: T+1- e rj kT + _Z Yk sin T +k

for arbitrary YT+I sinc, sin [rjk/(T + 1)] = 0 for k = T + 1. Further we have

(7.1) 1 (T-) yk sin 2rj )k
zj 2(+ E 2(T+ 1)'+ )k= I

where Yk = -Y2(T+l)-k, k = T + 2,...,2T + 1, and /2T+2 is arbitrary. Then (7.4) has the

usual form of the sine-transform for 2(T + 1) observations and the usual computations for

the fast Fourier transform are available.

7.2. Evaluation of quadratic forms

\We want to calculate

T 2

(7.5) -R-(j+1)y = qjo j1 + = 0, 1,2,
S=1
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vmhich can be done in a straightforward manner. That d, = -dT+1- 5 can be exploited.

For example, if T is even

T 2

(7.6) q00 = Z
=11+pd

T/2 2 2E ;-s- +  T 1,

8=1 1 + d,1 - pdjT/2 (1 - pd,)' + (1 + pd , )z2

=i p2d2

T12 -2 2 2 - 2 -2
(s Z +I- + pd T+l-s)

1- p2d
2

while if T is odd, since then d(T+)/2 = 0-

(T -1/2 2 2+ d ( 2 2+1 325 Z. + zT+ a Td~ -zrs(7.7) q00 -- '(T+l)/2 +  - 2d2

Using this procedure we have for T even

T 28
(7.8) qio - ( + pd. )2

T/2 2 Z ]

--2 (1 + pd.) 2 + (1 - pd.)2

8=1(1
T/2 (1 1 + )(Z + .) -2p.

- (1 - -p2d) 2

T/2 (1 + p2d4)(z2 + .+_) ps Z2s-z+_,

= Z (1 - p24)2

while if T is odd,

(T-1)/12 (I + p2d)(z. + z2+,_ 8 )- 2pd,(z2 -2 + )(7--q/ q1o = z(T+I)/2 + E_ (I - p2d2 TI-
(11 -pd)

2

Similarly, for T even

T 2

(7.10) q20 = E ( I
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T/2 2 2zs_ + T+I -

T/(1 + pd.)' + (1 - pd,)'

8=1

T/ ( + 3p 2d,)(:, + 4+1-) (3pd8 + )3 2
pd pd dZT: 4+-s

= (1 - p~d)-

while if T is odd,

(T-1)/2 (I +3a, Z2+Z+p3 -22

(7.11) q20 = Z(T+()/2T+ ) (1 ± 3p2d)(z + z}+._.) (3pd8 + p3 ds)(z8=1(1-pds)

The series form can be used to obtain

0, r(j + k + 1) T

(7.12) qjo = k!'(j + 1) (-P)kEds
k0 8s=1

7.3. Evaluation of traces

Since the characteristic roots of G are

7rs =e ' +eir,
(7.13) d, = 2cos T e 7TI + eT+ ,

the characteristic roots of G2k are

(7.14) d!= (e'7T + e-' T)2

2k

(7.15) t2 i - ( ( ) -
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Since

(7.16) =T+1 if(k-j)-0,±(T+l),±2(T+),...
S=O

- 0 otherwise,

we have
T

(7.17) = T ifj -k,k:(T+1),k-2(T+ 1),...

-- 1 otherwise.

Then
2k 2k

(7.18) tr G2k Z2)~1±T 1) _ (2~k)Y-o J2 (-l) + (T + 1:

y=O j=0i---k,k (T -(I),..

The first term in tr G 2 k is -1 times

(7.19) 2k(2k) =22k.
E --
j=O

The second term is T + 1 times
(2k) k =0,1. ,

(7.20) )+2 2+) k=T+1,...,2T+,

Then

(7.21) tio = Z )(T + 1)- 22 k p2 k
k---

+2T+ )0 2k p 2k + (T ) 2k p2k+
+2(T+1) k - (T + 1) - 2T k - 2(T + 1 ) +

k=T+l k=2(T+1)

The first term in the first sum in (7.21) is T + 1 times

(.22) (2k)! 2k 00 r(2k + 1) 2k
k" (k!)2 k!r(k + 1)
k=O k=O

F(k + )F(k + 1)22,p)
2

k=D k!r(k +)

8(kE k~r( ) (2p/' [I1- (2p) ]-
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We have used n! = F(n + 1) and the duplication formula for the gamma function

r(o + -)F(, + 1)2 21
(7.23) F(20 + 1) = +

The first sum in tj 0 is

(7.24) T+1 1

7/I - 4 p2  1 - 4p 2 '

which is a good approximation to tio because the neglected terms are O(p2(T+I)). Thus

we obtain

T +±1 1 02T±) cc ( k g) 2k(7.25) t 10 = -4p - p +1 T P- + )
g=, k~g(T+l)

The sum on k in (7.25) can be related to the hypergeometric function as follows: for
each fixed g = 1,2,.

(7.26) (k - g(T + 1I
kg(T+1l)

= (2k)! 2kE [k - g(T + 1)1! [k + g(T + 1)]!

k=g(T-j-I)

= [2(h + g(T + 1))]! 2h+2g(T+I)

- h![h + 2g(T + 21)]!
h=0

_o r[2h + 2g(T + 1) + 1 p 2h
h!r[h + 2g(T + 1) + 1h=O

_ 2g(T+ 02 2g(T+l) cc F[h + g(T + 1) + 1/21r[4 + g(T + ) + 11] 2
- P / h I hlF[h + 2g(T + 1) + 1] (2p)2

( 2 p)2g(T+1) r[g(T + 1) + 1/2]r[g(T + 1) + 1]
r-rr[2g(T + 1) + 1]

F[g(T + 1) + 1/2,g(T + 1) + 1;2g(T + 1) + 1;4p2],

where we used the definition of the hypergeometric function

(7.27) F(a, b; c; x)=-r(a+j)r(b+j) r(c) xJ
(b ) i r(a) r(b) r(c+j) j!
j=O
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We conclude that

(7.28) T + 1 + ("p)2g(T+l)t0 =- _p 2  1 4p2 +  2(T-+ 1) g=Z
g1l

r[g(T + 1) + 1/2]r[g(T + 1) + 1]
F[2g(T + 1) + 1]

F[g(T + 1) + 1/2, g(T + 1) + 1; 2g(T + 1) + 1; 4p 2 ].

The argument in Section 7.2 can also be used for traces. In effect,
T T12 1

(7.29) t d 2 _-_pd for T even,
(7.29)ltd =L1E2d2'

(T-1)/2

=1+7 s= 1= - 1- p2d21 for T odd,

T T/2 2d2

(7.30) t 20 =1 =) 2Y 1+pda for T even,
E (1 + pd.,)2  F'- (1- )2

(T-=)/2 + +p , for T odd.

S (1p 2 d2')2

The expression in (7.24) is an approximation to t1o. This value can be obtained by

approximating the sum defining t1 0 by a corresponding integral, as was done in Anderson

(1971). Besides (7.24) this procedure provides the following approximations:

(7.31) 1 (T+ 1 - V/1--.p 2  4p2}
(7.31) z,"-,p ( I ,1) /-_4p 2  I ---4p 2 '

(7.32) t20 -(T + 1)V/1- 4p - (1 +4 p2)

(1 - 4p2)
2

-4(T + 1)pVF1 -4p 2 + 8p
(7.33) t2l - (1 -4p2)2

T+1 1-8p2  4+16p2

(7.34) t22 " 2 (1 -. 4p2 ) 3 / 2  (1--4p2) 2
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These five approximations also satisfy relations similar to those derived in Section 6.1

among the needed traces, and in particular they satisfy equations similar to (6.2) and

(6.5).

8. Other Exact Maximum Likelihood Procedures

In this section we collect some approaches related to the procedures developed in

previous sections.

8.1. Calculation of quadratic forms containing the matrix P.

We consider an approach that permits the calculation of quadratic forms of the type
Y I y. We illustrate the ideas with the cases j = 1 and 2. These quadratic forms can

be used to implement iterative procedures in terms of a or to compute quadratic forms in
an iterative procedure for p by using (2.17).

Let 0i 0 00.. 0
1 0 ... 0 00

(8.1) L= 1 ... 0 0 ,a= B=I+L, Q BB'.

00... 1 0)

We see that B is nonsingular,

(8.2) P = Q + aa',

(8.3) p-1 = Q- 1 - 1  QlaaQ- 1.1 + a'Q-1a

This is a simple case of a general formula called Woodbury's formula by some authors; see,

for example, Phadke and Kedem (1978) and Press (1982).

Calculation of y'P-ly.

(8.4) y'P-' y=y'Q-ly- aY'Q-1aa'Q-y
1 + a'Q -a

= Y'B'-'B-y - a'B'B ay'B''Baa'B'B 1 Y

z'kk'z (z'k) 2

1 + k'k 1 + k'k'
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where

(8.5) B-1y = z, y = Bz,

and

(8.6) B-'a = k, a = Bk.

We have to find z and k in these two linear systems for given B, y, and a. To solve (8.5)

we have

(8.7) ( : = (I + L)z = z + aLz = Z2 + o z1

Y.T) ZT + aZT-1

and hence,

(8.8) zl=yi, zj=yj-azjpl, j=2,...,T.

These equations can be solved by repeated substitution, giving

j

(8.9) zj= '(-a)j-'y, . = 1,..., T.
8=1

To solve (8.6) we have

0 k2 + ak,

(8.10)

kT + akT-1

and hence,

(8.11) k-o, kj.= -akpi, j 2,... ,T.

This is solved explicitly as

(8.12) kj= c(-c) -1 = -(-a)', j = 1,... ,T.

To use in (8.4) we need

T T 2T -- 2T+2(8.13) 1+k'k=1+Z k2=1++a 2j " =- 1+ + ' '+ o T - 1-.2

41
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We then proceed as follows: Start with

(8.14) z= Yi, S 1 -- z1, S21 - azl;

then compute in succession

(8.15) zj = yj - azj-., S, = S1 ,j- 1 + z, S2j = S2,j-1 - (-a)zj, j - 2,... ,T.

Then

I -1 -- 2

(8.16) yP-y = S1T- 1 - 2 T " S2 T "

Calculation of y 'p 2 y.

(8.17) 1 B" (B-',) - 1 + k'k B ' - ' ( B - 1a ) ( B - 1a ) ( B - l y )

1 k'z

B,-_z 1 B ' - kk'z = m n ,
1 + k'k 1+ k'kn

and it suffices to find m and n in the linear systems

(8.18) m = B ' - z, z = B'm,

(8.19) n = B'-1k, k = B'n.

These systems can be analyzed in the same way as (8.7) and (8.10) to provide the

following recursive procedures:

(8.20) MT = ZT, mi = zi -amj+I, j T -

(8.21) nT = kT, nj = kj - anj+,, j T -

The nj are given explicitly by

1e -2(T-j+l)

(8.22) nj= -(-)'I - .2 T.

We proceed as follows: We have zi,. . . , ZT available from the calculation of y'P y,

and also S2T from (8.15). We then start with

(8.23) MT = ZT, nT---(--.V)T, S3T--z4, S4T o2T, SST -T
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We then compute in succession

(8.24) mj = zj - amj+x, nj = -(-a)j - anj+, =T- 1,...,1

and

(8.25) S3j = S3,j- + mj,2 S 4 j - S 4 ,j-I + n 2 , Ssj S 5 ,j-1 + mjnj,

j=T-1,...,1.

Then

I 1-2 ) 2  !2a

(8.26) yp- 2 y = S 31 + (G a2T+2 S2TS41 - 2 2 T + 2 S 2 TS 5 1"

8.2. Estimation using the EM algorithm.

The analysis in the preceding section can be related to the EM algorithm for computing

maximum likelihood estimates, as described for example in Dempster, Laird and Rubin

(1977).

The generating equations for YI,.. , YT coming from the MA(1) model (1.1) can be

written as

.2) Y1 u1 + auO 1 0 0 ... 0 0 u1

2+ al a 1 0 ... 0U 0(8.27) (-.)=(.
(YT) UT + WUT-I ( 0 0 ... a 1) (UT(0

In terms of the notation used in (8.1) we write this as

(8.28) y = (I + aL)u + uoa = Bu + uoa,

which in turn can be written as the transformation

(8.29) (;>.( a )(U)

We take (uO, u')' as N(O, a2IT+,). The transformation (8.29) has Jacobian equal to 1, and

hence (uo, y')' is normal with expectation 0 and covariance matrix

(8.30) a2 ( 0') ( 1  a') ( a=' a2 (1) =U2 ( a)
B 0 B')= a  B a  P44
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The determinant of this covariance matrix is 1.

To use the EM algorithm we augment the observations YI,..., YT by the unobserved

u0 and consider it as a "missing observation." The EM algorithm is an iterative procedure.

Given preliminary values of the parameters a and o.2 we obtain an estimate of uo say u0!)

as the conditional expectation of uO given y and preliminary values of a and a2 . Next
2 ~~~( 1 ) ) B e a s

we obtain maximum likelihood estimates of a and a2 on the basis of (u 0 , y'). Because a

appears only in the exponent of the normal distribution of (u0 , y'), this step amounts to

minimizing the quadratic form in the exponent of the normal distribution of (u0, y') and'-

then maximizing the resulting concentrated likelihood with respect to a 2 . However, since

the value of a 2 is irrelevant to maximizing the likelihood with respect to o, one can carry

out the iteration with respect to a and after its completion find the estimate of a 2 .

To study the joint density f(uo, y) we use

(8.31) f(uo,y) = g(uoly)h(y).

From the covariance matrix (8.30) we find

(8.32) E(uoly) = a'P-ly = a' (Q-1 - a1-aQ Q -  = a-a - l

(8.33)

Var (uoly) = aPla=aQl_ 1  QlaaQ 1 ) = 11 + a'Q- a - +a Q -  a'Q - 1a

while Ly = 0, Var(y) = P.

Hence, the exponent in the joint density of (uo, y') is - 2 times

(8.34) y'P -y + (1 + a'Q-'a) (uo - 1+ a' -a 'Q

0 (( + ( 1 + a'Q-1a -a'Q - 1  J

We now apply the EM algorithm.

E-step. For a given value of a calculate

(8.35) fio = £(uoly) =

1 + a'Q-1 a*
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M-step. Minimize with respect to a the quadratic form

(8.36) ( [( ( a')y , ( 9
a (0)
=( o~,)1 l a 'Q - la  -a'Q-1) ft 0

_Q-1 a  Q-1)Cy

2(1 + a'Q-'a) - 2uoa'Q y + y'Q-'y.

With the minimizing value of a repeat the E and M steps.

Since Q = BB', z = B-'y, k = B-'a a used in Section 8.1, we have that in this

notation (8.35) is

a'B'-l B-ly Z'k
(8.37) U0= -- -I !

1 + a'B'B-'a 1 + k'k'

and (8.36) is

(8.38) fio(1 + k'k) - 2Ni 0z'k + z'z.

If in (8.38) we substitute for fto expression (8.37), we obtain

(8.39)(z'k)2 2 (Z'k)2 (Z'k)2 = P-
1 + k'k 1-+ k'k 1 + k'k

in view of (8.4). Hence, we are minimizing y'P-ly with respect to a, but doing the

iterations via the EM algorithm.

8.3. Use of the explicit components of the inverse covariance matrix.

As indicated at the beginning of Section 3, the likelihood function can be written as a

function of a and a2 in terms of the determinant (3.1) and the components (3.4) of P-1.

In effect,

(8.40) y'P-ly _ (1-0a 2 )(1 a2(T+)) E Y (1 -a 2 )(1 a 2(T - + 1))
) =1

T-1 T-s

+2 , 5 ysy.+,(-a)t (1 - a'-)(1 -

8=1 t=1

Godolphin and de Gooijer (1982) derived from the likelihood function, expressed in

these terms, an iterative procedure for cr.
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8.4. Relation to optimal prediction.

The likelihood function, for example (2.11), can be written in another equivalent form

by using (5.25), (5.26), and (5.27). In effect,

T

(8.41) IP] = IVU'iV I 'I = 17 S'
s= 1

T 7,2

(8.42) y'p-y - (U-)' (Ul) = ' -ft.
s=

where in analogy to (5.32) we define

1
(8.43) 71 = Ys - s,s-ls-1 Ys - a Ws-1.

Hence, (2.11) becomes

(8.44) L*(a,a 2 ) = ( 2 7r)-T/2(02)
- T/2 ( si exp {--- 1

\s .l / Il _ s=

with 6,,, = h~hz_ defined in (5.26) (/ - (1 - a2('+'))/(1 -a 2 ) from (3.1)], and zi,

defined in (8.43).

This expression can be related to minimum mean square prediction (and hence to

Kalman filtering), as several writers have recently emphasized. In effect, we can prove

that in our case.

(8.45) 8,=y -(y ]ya._.,...,yi), s=2,...,T,

with wib = 0, is the error of the optimal prediction of ys based on Ys-1,.-., yl, and

(8.46) a2 ,, = Var(zos) ={ [YU -((YIY1,... Y)] 2Ys--l,...,Y}.

Harvey (1981), while considering the Kalman filtering approach to the problem of

estimation in the MA(1) model, gave (8.44), (8.45), and (8.46), and wrote the recursions

(in our notation) as

(8 .4 7 ) *= 1 + a 2 -- = 1 a

1+ a2 + ...+ a 2(s- )  1-2 '
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t's-1 1 - a2(s-1,
(8.48) 'as = Y'. - a - Y' + (-a) 1a2s -1.

Brockwell and Davies (1987), Section 8.6, gave what corresponds to our analysis in (8.41)

- (8.46) of this section, based on a different approach.

We complete the details by using a standard argument in the operation with mul-

tivariate normal densities. The likelihood function is obtained by considering the joint

normal density of y. YT as func- ion of its parameters. A joint density f(Y1 . YT)

can be written as

(8.49) f(YI,..,YT) = f(YTIYT-1,...,YI)f(YT-1 YT-2,...,y.)' f(Y2 Y)f(Y),

that is, a product of conditional (and one marginal) densities. In the multivariate normal

case that we consider. all these densities are normal. Tne expected values can be written

as functions of the (t - 1)-dimensional vectors of covariances

(8.50) [Co(y,y_l),Cov(y,,yt 2 ),...,Cov(yt,yl)] =a 2 [a,0. 0], t = 2,... ,T

where we used (2.2), and of the (t - 1) x (t - 1) matrix -t-1 that contains the covariances

corresponding to the set y..... , yt-1. Hence,

lit-1

(8.51) £(ytlyt-,... ,Yi) a 2 (a,0, ,-1

Yi

Yt-i

=(a, 0,..., 0)Pt-1

t-i if-1 - 2(t.1)

= P -lyt-j = a ( -1 2t

j=1 j=1

t-1= _ Y,-j,
j=1 A t--I

while for t = 1 we take this expected value to be equal to yi.

48



Similarly,

(8.52)

var ,tly,-1,,... ,y,) =vakt,) _ a2(a',0,... ,0 'Pt- I 0

\0
--7a211i+ C2) 2 2 11 or2_1+ a r2 C2( a 2(t-1) a2t)

-a)- a a P1 -' a 2(1 + a 2 ) -aa
2 (l - a2  ))/(I - 0 t

2 1 a2(t+,) 2 t

1 r =2 t = 1-I

Substitution in (8.49) gives

(8.53) L *((-o)2 )=(2-T/ 2  2_ f)

exp Ta I~ v y, + 2~ -

Comparing with (8.44) we see that it suffices to show that the expression in brackets equals

w,. From (8.43), by reperted substitutions, we obtain

a _ 1 a2I
(8.54) tv, = y.q w-1 = Ys - - Y-1 w-2

ls-l,s --'s sI-2,s-2

= y'-i + + (-)k I -Y-k
S17s-,3-1 Vs-l,s-- " s-k, j-k

± (_a)k+ 1
V(--a-1" Ws-s-,8- - -

and the result fnllows because

(_8.55 hs-2 Zis-k __ ,3-
(8.55) ,a,,_1 ""=-k,,--k -- -2  AL -3  L s-k-1 - A -k-i

9. Numbers of Operations Needed to Do the Calculations

Quadratic forms and traces were given (in the frequency domain) in Sections 7.2 and

7.3, respectively, for T even and for T odd. To simplify the analysis in this section we

consider the case of T even, since we are interested in orders of magnitude of the numbers

of operations.

The traces tio and t 20 are given in (7.29) and (7.30). Assuming that d, = 2 cos rs/(T+

1) is available in the computer, we calkulate d4 for s = 1,. .. , T/2 once and for all, and use
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that d, = -dT+.l for s = (T/2) +1,..., T; we also calculate p 2 once for each iteration.

Then (7.29) requires T/2 multiplications p2d' , T/2 subtractions 1 - p2d , T/2 inversions

and T/2 additions. Formula (7.30) involves additionally T/2 additions 1 + p 2d, T/2

multiplications to obtain the square in the denominator, T/2 divisions, and T/2 additions.

For tio and t2o we have altogether 2T additions or subtractions, T multiplications, and T

divisions. See summary table below.

We next consider the calculation of the quadratic forms given in equations (7.6) to

(7.11). The calculation of the zj in (7.4) is about Tlog 2 T multiplications and additions,
" ~2

but that is done once and for all. For T even, q00 is given in (7.6). The sums z; + ZT+-

and differences z2 +- are calculated only once. The additional computations for
one iteration is T multiplications to obtain pd8 and then pd,(z. - T+/a t

T/2 divisions, and T/2 additions. For T even, qio is given by (7.8). This is additionally T

multiplications, T/2 subtractions, T/2 divisions, and T/2 additions. Thus for qoo and qio

we have 2T additions or subtractions, 2T multiplications, and T divisions. For T even, q20

is given by (7.10). This is additionally 2T additions or subtractions, 5T/2 multiplications,

and T/2 divisions. Finally, for q0o, qio, and q20 we have 4T additions or subtractions, 9T/2

multiplications, and 3T/2 divisions.

The calculations in the time domain were summarized in equations (6.29) to (6.46).

To compute qoo and qio in (6.43), we use formulas (6.34), (6.35), (6.40), and (6.42), which

were also given in Section 5.3. Considering as if we had T steps instead of the T - 1

actually considered there, they involve 5T additions or subtractions, 4T multiplications,

and 3T divisions. To compute q20 in (6.46) we use formulas (6.44) and (6.45), that involve

additionally 3T additions, 3T multiplications, and T divisions.

The traces tio and t20 are calculated in (6.36), (6.37), (6.38), and (6.39). In (6.36)

there are

T T-1

8=2

multiplications. Then (6.37) involves

T T- I T-1

(9.2) 2 =Z s(s +1) = 2J>s+ 1)(s +2) 2 E ~(S2 +3s ±2)
s=2 j=1 a=2 8=1 =1

= (T )T(2T- + - 2(T-) (T - 1)(T 2 + 4T + 6)

multiplications and additions. To obtain t (T = t()

divisions and T- I additions, and to obtain t20 = t20
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s (T + 2)(T - 1) additions, the same number of multiplications, and T(T - 1)

divisions. Thus tio and t 20 require altogether (T - 1)(T 2 + 7T + 18)/6 additions and

subtractions, (T - 1)(T 2 + 10T + 12)/6 multiplications, and (T - 1)(T + 2)/2 divisions.

The number of operations can be summarized as follows:

Quantity Time Domain Freq. Domain

Computed ++- X

qoo 4T 3T 3T T T T2

qio T T -T T T
2

qoo, qio 5T 4T 3T 2T 2T T

q20 3T 3T T 2T 5T T

qoo, qioq2o 8T 7T 4T 4T 2

(T-1)(T2 +4T+12) (T-1)(T 2+7T+6) T- 1 T T T
tl0 6 6 2 2

(T-1)(T+2) (T-1)(T+2) T(T-1) T T T
2 2 2 2 2

tt (T-1)(T 2+7T+18) (T-1)(T 2+10T+12) (T-1)(T+2) 2T T T

We can compare the different procedures by comparing the number of computations
(z), 4i), -

per iteration. The scoring procedures 1 and 3 require the computation of 0, 10, t1O
t(2, while the Newton-Raphson procedures require in addition the computation of 20. It

will be seen in the table above that except for the computation of the Fourier coefficients

Z 1 ,..., ZT the number of computations carried out in the frequenc:- domain is substantially

less than in the time domain. In particular, the number of operations for to and t ) is of

the order T 3 /3 in the time domain, but of the order 4T in the frequency domain. Since the

advantage of the frequency domain is in the calculation of the traces, which do not require

the Fourier transform of the data, the efficient calculation by any of the procedures is to

compute the quadratic forms in the time domain and the traces in the frequency domain.

Of course, counting the number of operations is only one aspect of the evaluation of

these methods. Also relevant are the speed of convergence and the behavior in medium-

sized samples.
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10. Box-Jenkins Procedures

In this section we consider the approach of Box and Jenkins (1976) for computing the

quadratic form q00(a) = yP-ly and its derivative dqoo(a)/da for any given value of a.

Box and Jenkins (1976) proposed to estimate a by minimizing qoo(a); operating with this

objective function is different from maximizing the likelihood function or minimizing the

concentrated likelihood (2.13) with respect to a because the determinant IP is ignored.

See Box and Jenkins (1976) Chapter 7.

As in Section 8.2, let us consider the transformation from (uo., u')' which is N(0, a21T+I)

to (uo, y')', defined now by

(10.1) ( U) = B-W()' B =:BT±1 = IT+, + QLT+l,

where, as in (8.1), LT+I has l's along the diagonal immediately below its main diagonal

and O's elsewhere. Let

(10.2) M = (B-')'B-1 (moo rno,)
\rni0 Mil)'

where in1 o = m o1 . Then the quadratic form in the exponent of the normal density of

(uo,u')' is -1/(2a 2 ) times

(10.3) (u0, ' (= ) (U0 Y') M o No,
(U)= Mio Mil Y}

= inoo Uo + m0l) +y ' - -rn.miomo) y.

Since the Jacobian of the transformation (10.1) is 1, in the normal density of (u0 , u')' we

can substitute B - 1 (uo, y')' directly to get the normal density of (uo, y')', and this in turn

can be expressed as the product of the marginal density of y times the conditional density

of uo given V. The quadratic form in the exponent of the marginal normal density of y is

-1/(2a2) times

(10.4) 4oo(a) = Y' (Mil - -mioMoi)

and the quadratic form in the exponent of the conditional normal density of uo given y is

-Moo uo+ IMoI /) 2(2a2). Thus

1 _, 1 I n1

(10.5) '(uo IV) - Moo j e =)
Moo5
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because y = E(y~y), and hence

(10.6)

= y M11 -IMO -- nY0 = - ¢0(a).moo

In conclusion, we have shown that

(1 T
(10.7) qOo(a) = yp-Py =Y, Mii - -M o ni o y =: [(UtIV)] 2 .

77/00t=0

To compute E(utly) for t = 0, 1,... ,T we use the process ut introduced in (2.1) and

a process of independent normal (0, a 2) random variables for which

(10.8) Yt =V 4- vt+l,

that is, has the "time" reversed. Box and Jenkins (1976), Chapter 6, call this the "back-

ward" form of the process.

From model (2.1) we have for a given value of a the recursive relations

(10.9) E(uiIV) = - aE(ut-, IV), t = 1,...,T,

which would provide all needed conditional expectations if $(uo Iy) were known. It turns

out that we can obtain 9(u01v) from a recursive relation derived from (10.8), namely

(10.10) 6(vt Iy) = y, - a(v,+i 1y), t = T,... ,1,

if we make the additional assumption that for some sufficiently large T*, 1 < T* < T,

((VT- It) = 0. We note that $(ujlit) = 0 for t = 0,-1,-2,... and for t = T+ 1,T+2,...;

similarly,,$(vt IV) = 0 for t = 0,-1,-2,... and for t = T + 2, T + 3,....

Starting with ((VT. It) = 0 and using (10.10), we obtain ((VT. - 1 IV),... ,£(vi IV).

For t = 0 (10.10) yields 0 = E(yoly) = aE(vijy). Then use of (10.9) for t = 0 yields

$(uolI) = $(yolI) = aE(viIV), which is the desired starting value.

If more accuracy is needed, one can obtain ((YT+i 1i) = aE(UTIy) and E(VT+l [i) =

$(YT+1 IY) to begin another round of recursions.

Finally we are in a position to compute q00(a) = ET 0 [f(ut IV)] 2 for any given value

of a. The analysis of oo(a) is illustrated in Box and Jenkins (1976), Section 7.1, where it

is denoted by S(O) in general.
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Suppose that a,- is an initial value of a, and let E(utly, ao) denote the value of the
conditional expectation of ut given y calculated for this value ao. For any a we can
approximate £(utIy, a) as

(10.11) C(UtIV, a) E(UtIy, ao) + dE(u t/a) (a 

and qoo(a) as

(10.12) qoo(a) { T S(Utly, ao) + dE(utIy,a) a - ao)
t=O

Minimization of (10.12) with respect to a occurs at

i:TdE(u t aV )
t=~ C(UtIY Q)(Ya

(10.13) d-o= 0 = [ ( L 10=0o

From (10.9) and (10.10) we obtain
de~u IV)de(utI IV)

(10.14) dC(a,, )_ E(u,- 1 y) - a , t = ..

dd(vIV)c(vt+l y) t = 1,... , T,

(10.15) da da

since yt, t = 1,... ,T does not depend on a. Further, we need

(10.16) dE(uoly) = dE(yoIy)
da da

since E(u-y) = C(u_ 2 1y) = ... - 0. To calculate (10.16) we use an approximation
obtained by calculating (10.15) recursively from some T* replacing dE(vT. ly)/da by 0.

This leads to
(10.17) 0= dC(volly) _ d(yoIy) _ dE(vi IV) _(,alI),

da da da v

which is solved for d9(yo y)/da. Thus we obtain the constituents of (10.13).
The Taylor-series expansion is considered by Box and Jenkins (1976) in Section 7.2.
As in Section 9 we can now count the number of operations needed to do the calcu-

lations. These can be summarized as follows
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Quantity

Computed +/- x

C(vt 1 y) T + I T + 1
I(ztLy) T + I T + 1

oo(a) T T + 1

d((vt Iy) T + 1 T + 1
da

dE(utly) T + 1 T + 1
da

dqoo(a) T + 1 T + 1
da

Total 6T+5 6T+6

It should be emphasized that the minimization of qoo(a) is not the same as the maxi-

mization of the loglikelihood because of the factor log IPI = log(1 - a2T+2)/(1 - G 2 ). Even
for T so large that a 2 T + 2 is negligible the term log(1 -a') - -a 2 may not be small enough

to ignore. Each procedure studied in detail in this paper is exactly maximum likelihood

in the sense that the iteration is meant to converge to a local maximum. Therefore, these

iterative maximum likelihood procedures are not directly comparable to the Box-Jenkins

procedures.
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